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ABSTRACT

We estimate the thermal conductivity of a weakly collisional magnetized plasma with chaotic magnetic field
fluctuations. When the fluctuation spectrum extends over two or more decades in wavevector, we find that thermal
conduction is very efficient; the conduction coefficient is only a factor of∼5 below the classical Spitzer estimate.
We suggest that conduction could play a significant role in cooling flows in clusters of galaxies.

Subject headings: conduction — cooling flows — galaxies: clusters: general — magnetic fields

1. INTRODUCTION

Hot X-ray–emitting gas is ubiquitous in clusters of galaxies
(Sarazin 1988). Since the X-ray emission is energetically im-
portant in many clusters, it is believed that a significant amount
of mass must continuously cool and drop out of the intracluster
medium (Fabian 1994). The mass deposition rate is estimated
to be as much as several hundredM, yr�1 in some clusters
(see, e.g., David et al. 2001 and Allen et al. 2001).

Direct evidence of the cooling gas has, however, been scarce
(Fabian 1994). In particular, recent observations withXMM-
Newton (Böhringer et al. 2001; Molendi & Pizzolato 2001) and
Chandra (Fabian et al. 2001) have failed to find the multitem-
perature gas one expects in a cooling flow. The observations
suggest that mass dropout may be less significant than previ-
ously thought. A reduced level of mass dropout is possible if
there is a source of heat to replace the energy that is lost through
X-ray emission, but no clear heat source has yet been identified
(Fabian et al. 2001).

The inner region of a cluster (R approximately a few times
10 kpc), where mass dropout seems to be occurring, is typically
cooler than the rest of the cluster. Therefore, an often discussed
source of heat is thermal conduction from the hot outer regions
of the cluster to the center (Binney & Cowie 1981; Tucker &
Rosner 1983; Bertschinger & Meiksin 1986; Bregman & David
1988; Gaetz 1989; Rosner & Tucker 1989; Pistinner & Shaviv
1996; Dos Santos 2001). While the idea is attractive, it requires
extremely efficient conduction, which is considered prob-
lematic.

In a classic paper, Spitzer (1962) showed that thermal con-
duction in an unmagnetized plasma has a diffusion constant,4

∼ cm2 s�1, where2 32 5/2 �1k ∼ l /t p lv 4 # 10 T nSp Coul 1 �3t

is the mean free time between Coulomb collisionst p l/vCoul t

andl and are the mean free path and the thermal speed ofvt

electrons (Cowie & McKee 1977; Ettori & Fabian 2000):
kpc and ∼ cm2 s�1.2 �1 1/2 9 1/2l ∼ 30T n v ∼ (kT/m ) 4 # 10 T1 �3 e 1t

Here, keV is the scaled temperature,T p kT/10 n p1 �3

cm�3 is the scaled electron number density, and we have�3n/10
used an average value for the Coulomb logarithm, .ln L ∼ 38
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4 The coefficientkc, which enters in the heat flux equation , isq p �k ∇Tc

related tokSp by , wherekB is the Boltzmann constant. Note alsok p nk kc B Sp

that heat diffusion and particle diffusion have slightly different coefficients,
differing by a factor of order unity.

The time required for heat to diffuse conductively across a
radius kpc is given by ∼2R p 100R t ∼ R /k 8 #2 Sp Sp

yr. For conduction to have a significant effect6 �5/2 210 T n R1 �3 2

on a cooling flow, the conduction time must be comparable to
the cooling timetcool of the gas. Table 1 lists representative data
for two clusters, Hydra A (David et al. 2001) and 3C 295 (Allen
et al. 2001), at two characteristic radii, 100 and 10 kpc. Col-
umns (6) and (7) givetcool and tSp. We see that if thermal
conduction in a cluster is as efficient as in Spitzer’s theory, or
even if it is a factor of a few less efficient, heat conduction
will have a strong effect on the energetics of a cooling flow
and perhaps will shut off mass dropout. The main problem with
this idea is that the gas in a cluster is likely to be magnetized,
and conventional wisdom says that magnetic fields severely
suppress conduction relative to the Spitzer level. This is the
topic of the present Letter.

We discuss, in § 2.1, the theory of conduction in a tangled
magnetic field as developed by Rechester & Rosenbluth (1978,
hereafter RR) and Chandran & Cowley (1998, hereafter CC);
the theory predicts that the coefficient of thermal conduction
is a factor of∼100–1000 lower than the Spitzer coefficient.
We then present, in §§ 2.2 and 2.3, an extension of the theory
to a turbulent medium; we show that if turbulence extends over
a factor of 100 or more in length scale, thermal conduction is
almost as efficient as in Spitzer’s theory. We conclude with a
brief discussion in § 3.

2. THEORY OF THERMAL CONDUCTION IN A WEAKLY
COLLISIONAL MAGNETIZED GAS

2.1. Conduction in a Chaotic Magnetic Field
with a Single Scale

In the presence of an ordered magnetic field, conduction is
anisotropic. Electrons stream freely parallel to the field line,
so the parallel diffusion constant is almost equal to the Spitzer
value: . (The factor of is because diffusion is in1k ∼ k /3k Sp 3

one dimension rather than three; see CC.) Perpendicular to the
field, however, electrons follow circular Larmor orbits with
radius . Since an electron moves only a distance∼re inr K le

each scattering, the perpendicular diffusion constant is given
by . For a galaxy cluster with a2 2k ∼ r /t ∼ (r /l) k K k⊥ e Coul e Sp Sp

magnetic field of∼10�6 G, we have , andk⊥ is�12r ∼ 10 le

effectively zero.
Thermal conduction behaves very differently when the mag-

netic field is chaotic. The theory for a tangled field with a
single coherence lengthlB was developed by RR and has been
recently revived in the astrophysical context by CC. Since the
field is chaotic, the separationr of two nearby field lines must
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TABLE 1
Comparison of the Cooling Time and the Conduction Time

in Hydra A and 3C 295

Cluster Name
(1)

R
(kpc)
(2)

n
(cm�3)

(3)

kT
(keV)

(4)

l
(kpc)
(5)

tcool

(Gyr)
(6)

tSp

(Gyr)
(7)

tturb

(Gyr)
(8)

Hydra A . . . . . . 100 0.005 3.6 0.8 5 0.5 2
10 0.06 3.1 0.05 0.5 0.09 0.4

3C 295 . . . . . . . 100 0.008 5.0 0.9 7 0.3 2
10 0.15 3.0 0.02 0.3 0.2 1

have a Lyapunov-like scaling as a function of distancel along
the field:

r ∼ r exp (l/L ), (1)0 Lyap

wherer0 is the initial separation of the two lines. Because there
is only one characteristic scale in the problem, namelylB, we
expect .L ∼ lLyap B

Following RR and CC, let us consider the evolution of a
compact cloud of electrons of initial sizere. With time, the
electrons diffuse parallel to the field, with a diffusion constant
kk. As the electron cloud spreads out, its perpendicular extent
diverges exponentially according to equation (1). Thus, by the
time the electrons have diffused a Rechester-Rosenbluth dis-
tance along the field line, their trans-L ∼ l ln (l /r ) ∼ 30lRR B B e B

verse separation is of orderlB. The numerical coefficient 30
corresponds to , a typical value for a galaxy cluster13l /r ∼ 10B e

(assuming thatlB is a fraction of the radius). Being a logarithmic
factor, the numerical value is insensitive to details. When elec-
trons have moved a distanceLRR along the tangled field line,
their three-dimensional rms displacement isR

*
, where 2R ∼∗

BeyondR
*
, the motion of an electron is isotropic2L l ∼ 30l .RR B B

and uncorrelated with its previous path.
Let us definet

*
as the time it takes for electrons to diffuse

a distanceLRR along the field: . For , electrons2t ∼ L /k t ! t∗ RR k ∗
diffuse anisotropically: , . For1/2 1/2l ∼ (k t) r ∼ r exp [(k t) /l ]k e k B

, however, electrons diffuse isotropically and move int 1 t∗
three dimensions, according to , where1/2R ∼ (k t)∗

2 �2k ∼ R /t ∼ (l /L )k ∼ 10 k . (2)∗ ∗ ∗ B RR k Sp

We see that for the conduction is many orders ofR 1 R∗
magnitude more efficient than when the field is ordered. How-
ever,k

*
is still a factor of∼100 less thankSp. The conduction

time is correspondingly∼100 times longer than the Spitzer
time tSp. As Table 1 shows, such weak conduction is unlikely
to have an important effect on cooling flows.

The estimate given in equation (2) is valid so long asl !

. This condition, which is likely to be satisfied by the gas inlB

clusters [comparel with /(few) in Table 1], ensures thatl ∼ RB

collisions enable electrons to pass through magnetic mirrors
caused by inhomogeneities in the field. If , conductionl 1 lB

is suppressed by an additional factor (Chandran et al.v ! 1
1999; Malyshkin & Kulsrud 2001), since only a fraction of the
electrons are able to penetrate the mirrors. This would cause
the conduction time to increase by a factor of 1/v.

2.2. Conduction in a Multiscale Chaotic Magnetic Field

A key assumption of the RR theory is the presence of a
single Lyapunov length scale . However, if the me-L ∼ lLyap B

dium is turbulent, chaotic fluctuations will be present over a

wide range of length scales. We generalize the theory for such
a multiscale medium.

We begin by reexpressing the single-scale theory as follows.
When two field lines are separated by a distancer smaller than
lB, their mean square separationAr2S increases with distancel
along the field line according to a Lyapunov-like scaling. How-
ever, when , the increase is given by the usual diffusionr 1 lB

law, whereAr2S increases by for a parallel displacement2 2Dr ∼ lB

. Thus, we may describe the evolution in the two re-Dl ∼ lB

gimes, and , by the following two differential2 2 2 2Ar S ! l Ar S 1 lB B

equations

2 2 2 2dAr S/dl ∼ 2Ar S/l , dAr S/dl ∼ l /l p l . (3)B B B B

Consider now a tangled magnetic field with a range of scales,
and assume that the statistics of the magnetic field fluctuations
are described by the Goldreich & Sridhar (1995, hereafter GS)
theory of Alfvénic MHD turbulence. In a GS turbulent cascade,
there is a range of scalesl⊥ perpendicular to the field, extending
from a minimum scale to a maximum scalelB. The fluc-l⊥, min

tuations are anisotropic, so that for a given perpendicular scale
l⊥ the corresponding parallel coherence scalelk is given by

a(l /l ) ∼ (l /l ) , l ! l ! l . (4)k B ⊥ B ⊥, min ⊥ B

For simplicity, we have selected the normalization such that,
on the outer scalelB, the fluctuations are isotropic:l ∼ l ∼⊥ k

. The indexa is equal to for strong MHD turbulence (GS)2lB 3

and for intermediate turbulence (Goldreich & Sridhar 1997).3
4

Using the single-scale equations (eq. [3]) as a guide, it is
straightforward to write corresponding equations for a medium
with a spectrum of fluctuations. We then identify three regimes
for the evolution ofAr2S.

First, when , all the fluctuation scales in2 1/2r { Ar S ! l⊥, min

the medium contribute to Lyapunov-like growth (assuming that
they all behave chaotically), so

1/l⊥, min2 2dAr S d ln k 2Ar S⊥2∼ 2Ar S ∼ , (5)�dl l l1/l k k, minB

where we have written and ignored constants of orderk p 1/l⊥ ⊥
unity in the normalization of the integral. We see that the ef-
fective Lyapunov scale for the growth ofr is the parallel co-
herence length of thesmallest-scale fluctuations in the medium,
i.e.,

a 1�ar ∼ r exp (l/l ), l ∼ l l . (6)0 k, min k, min ⊥, min B

Since usually , the growth is rapid.l K lk, min B

Once r exceeds , the evolution switches to a secondl⊥, min

regime. We continue to have Lyapunov-like growth from scales
, but there is diffusion-like growth for scales . Thel 1 r l ! r⊥ ⊥

evolution equation for thus becomes2 2 2l ! Ar S ! l⊥, min B

1/r 1/l⊥, min2 2dAr S d ln k l⊥ ⊥2∼ 2Ar S � d ln k . (7)� � ⊥dl l l1/l k 1/r kB

If , each integral in equation (7) is dominatedl k r k lB ⊥, min

by the scaler. Substituting from equation (4) in differentiallk

equation (7), we then obtain the solution

1/ar/l ∼ (l/l ) . (8)B B
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Fig. 1.—Variation of the rms transverse displacementr of two field lines
vs. longitudinal distancel along the field lines, for . Four choices of the2a p 3

minimum scale of turbulence are shown, (solid line), 10�5�1l /l p 10⊥, min B

(short-dashed line), 10�11 (∼ ; dotted line), and 10�13 (∼ ; long-dashedr /l r /lp B e B

line), which correspond to , , , and�1 �4 �8l /l p 2.2# 10 4.6# 10 4.6# 10k, min B

, respectively.�92.2# 10

Fig. 2.—Variation of the decorrelation lengthLdec vs. . Note thatl⊥, min

for .�2L � 2l l � 10 ldec B ⊥, min B

Remarkably, the separation between two neighboring field lines
becomes of orderlB for a parallel translation of only∼lB; this
is much faster than in the RR theory, which requires a parallel
translation∼30lB. The solution corresponds exactly to1/ar ∝ l

in the turbulence model (eq. [4]). Thus, the rms sep-1/al ∝ l⊥ k

aration of field lines grows along the “Goldreich-Sridhar cone.”
When , we enter a third regime, which corresponds tor 1 lB

isotropic diffusion. From equation (8), it is clear that thermal
conduction in a multiscale chaotic field is almost as efficient
as in Spitzer’s theory. ReplacingLRR with lB in equation (2),
we estimate (but see § 2.3 for a better estimate ofk ∼ k /3turb Sp

the coefficient). As in § 2.1, we have assumed and havel ! lB

not included a magnetic mirror factorv. In GS turbulence,
perturbations on length scales have weak magnetic fieldl ! l⊥ B

fluctuations, , and cause negligible1�aDB/B ∼ l /l ∼ (l /l ) ! 1⊥ k ⊥ B

mirroring. Only perturbations on the scalelB cause strong mir-
roring, but these have a negligible effect so long asl ! lB

(Chandran et al. 1999; Malyshkin & Kulsrud 2001).

2.3. Numerical Solutions

We have numerically integrated the differential equations (5)
and (7), starting with an initial separation , and�13r p 10 l ∼ rB e

assuming as appropriate for strong turbulence in the GS2a p 3

model. Figure 1 shows four numerical solutions for the evo-
lution of r as a function of distancel along the field line,
corresponding to four choices of the minimum scale ofl⊥, min

the turbulence. We see exponential growth ofr for l ! l⊥, min

and power-law growth for larger separations, confirming the
scalings given in equations (6) and (8).

Let us define the decorrelation lengthLdec as the distance
along the field line for which the transverse separationr be-
comes equal tolB. Figure 2 shows howLdec depends on .l⊥, min

When , the turbulence is dominated by a single (outer)l ∼ l⊥, min B

scale. This corresponds to the RR theory, and in this limit the
decorrelation length is large, as expected. However, for

, we find thatLdec is quite small, asymptoting to�2l � 10 l⊥, min B

∼1.6lB. SinceLdec is the analog of the Rechester-Rosenbluth
lengthLRR for a multiscale medium, we may replaceLRR with
Ldec in equation (2) to estimate the diffusion constant in a tur-

bulent medium:5

k ∼ (l /L )k ∼ k /5, t ∼ 5t . (9)turb B dec k Sp turb Sp

Thus, if turbulence extends over at least two decades in scale,
conduction is very efficient and approaches the Spitzer level
to within a factor of a few.

3. DISCUSSION

Thermal conductivity in a homogeneous magnetic field is
known to be highly anisotropic—it is Spitzer along the field,
but extraordinarily reduced in the transverse direction. RR came
up with the important insight that when the magnetic field is
tangled and chaotic, thermal conduction is enhanced signifi-
cantly by the exponential divergence of neighboring field lines.
However, even with this effect, CC estimated that the conduc-
tivity in galaxy clusters is below the Spitzer level by a factor
�100.

We have shown in this Letter that if the field is chaotic over
a wide range of length scales (factor of 100 or more), as might
happen with MHD turbulence (GS), thermal conduction is
boosted to within a factor of∼5 of the Spitzer value. Such
strong conduction will have a significant effect on galaxy clus-
ters (compare cols. [6] and [8] in Table 1). It can transport heat
to the center of a cluster to replace the energy lost through
cooling, and it can also eliminate any thermal instability in the
cooling gas. Thus, it may well reduce the need for large-scale
mass dropout in cooling flows (Tucker & Rosner 1983; Bert-
schinger & Meiksin 1986). Only in the inner regions of some
clusters (e.g., 3C 295; see Table 1) might there be significant
dropout. It is worth noting that some authors have discussed
potential problems with invoking such strong conduction (Bin-
ney & Cowie 1981; Bregman & David 1988), while others
have rebutted these arguments (Rosner & Tucker 1989; Dos
Santos 2001).

An important requirement for the validity of our analysis is
that the magnetic field should behave chaotically; i.e., it should
exhibit Lyapunov-like behavior over a wide range of scales.
Weak MHD turbulence consists of a superposition of Alfve´n
waves and is not chaotic. However, the model of strong and

5 Since eqs. (5) and (7) are approximate and may contain numerical coef-
ficients of order unity multiplying the integrals, the numerical factor of in1

5

eq. (9) is approximate as well.
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intermediate MHD turbulence developed by GS is chaotic, as
indicated by the breakdown of perturbation theory (Goldreich
& Sridhar 1997).

It should be noted that our theory of thermal conduction
does not require ongoing dynamic turbulence. Each episode of
dynamic turbulence will leave behind a substantial level of
frozen-in tangled fields, even after the turbulent motions have
ceased. Such leftover tangled fields should be sufficient to en-
hance conduction to the levels we estimate.

As a final point, we should discuss a serious caveat.Chandra
has found evidence of sharp temperature jumps in a few clus-
ters, e.g., Abell 2142 (Markevitch et al. 2000) and Abell 3667
(Vikhlinin, Markevitch, & Murray 2001). The observations in-
dicate that conduction across the temperature jumps is far below
the Spitzer level (Markevitch et al. 2000; Ettori & Fabian 2000),
in apparent contradiction with the estimate presented here.

Vikhlinin et al. (2001) propose that the magnetic field is
stretched parallel to the interface, thus inhibiting diffusion
across the field on small scales. Extending this idea, we suggest
that when two distinct objects merge, as seems to be the case
with the above clusters, the two regions (each of which is
internally chaotic and highly conducting) may be thermally
isolated from each other because their magnetic fields have not
yet interpenetrated each other. It is unclear how long such
magnetic isolation will survive.
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